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Proof-theoretic semantics (P-tS) [16] is an alternative approach to model-
theoretical semantics, in which proof-theoretic validity replaces model-theoretic
validity to provide meaning of logic. There are two major branches of P-tS:
proof-theoretic validity (P-tV) in the Dummett-Prawitz tradition (see, for ex-
ample, [15]), and base-extension semantics (B-eS) in the sense of, for example,
Sandqvist [13, 11, 12]. As shown by Gheorghiu and Pym [0], this B-eS captures
precisely the declarative content of P-tV.

We focus on B-eS, in particular we take Sandqvist’s B-eS for intuitionistic
propositional logic (IPL) [12] as the point of departure. There, validity of for-
mulas is defined inductively from a base, which contains proof rules that give
the validity of atoms in terms of derivability.

Definition 1. A base # is a set of second-level inference rules of the form
(@i>q1y...,Qn>qn) = ¢, where each @; is a finite set of atoms, and ¢; is an
atom. Derivability in a base A is the least relation bz satisfying the following:

(Ref-IPL) S,qtz q.

(App-IPL) If atomic rule (Q1>q1,...,@Qn>q) = ¢ isin B, and S,Q; bz ¢
foralli=1,...,n, then S k5 q.

The semantics is in Figure 1, and is shown to be sound and complete. It
features in a distinct treatment of disjunction (V) and absurdity (L), which
takes the form of their elimination rules.

Our work is the first study on B-eS for a substructural logic. We give a
sound and complete B-eS for intuitionistic multiplicative linear logic (IMLL),
the (®, I, —o)-fragment of intuitionistic linear logic. Towards this, we start with
an alternative definition of B-eS for IPL which is closer to IMLL.

Revisit B-eS for IPL. The defining clauses for V and L in the B-eS for
IPL are distinct from its possible-world semantics (see Beth [2], Kripke [10]):
while in the latter V and L are defined in terms of their introduction rules,



H—gg p iff F%p

bz = iff plkgy

ez o A1 iff  Ikg @ and lkp

Iz V) iff  for any € such that Z C € and any p € A,
if o lky p and 9 lkg p, then Iz p

(1) kg L iff Ik p for any p e A

(Inf-IPL) Iz e iff for any € such that # C €,
if |kp v for any v € ', then lky ¢

Figure 1: Sandqvist’s Support in a Base

in the B-eS they are defined in terms of their elimination rules. This can be
explained by the principle of definitional reflection (DR) (see Hallnés [3, 9] and
Schroeder-Heister [141]):

whatever follows from all the premisses of an assertion also follows
from the assertion itself

Taking the perspective that the introduction rules are definitions, DR provides
an answer for the way in which the elimination rules follow. In particular, DR
gives the following generalized elimination rule for A:

oA [@5(1/)]
X

Accordingly, we may modify the B-eS for IPL by replacing (A) with the follow-
ing:

(N) FtmoAny iff forany € O % and any p € A if ¢, Ikp p, then lkg p

This clause motivates the later definition of the multiplicative conjunction (®)
in IMLL. The resulting semantics is shown to be also sound and complete.

B-eS for IMLL. We turn to the B-eS for IMLL. There are two distinguishing
features of our approach. First, following the principle of DR, all the connec-
tives are defined in terms of their elimination rules. Second, the strict context
management in IMLL requires extra care of multiplicity. The latter means that
in IMLL, sequents are of the form I' > ¢ where the context I' is a multiset of
formulas, and the deduction rules are multiplicity sensitive, using multiset union
denoted as ,. The yields the celebrated ‘resource interpretations’ of linear logic
— see Girard [7], Allwein and Dunn [1], and Coumans et al. [5]. The leading
example of which is, perhaps, the number-of-uses reading in which a proof of
a formula ¢ —o 1) determines a function that uses its arguments exactly ones.
This reading is, however, entirely proof-theoretic and is not at all reflected in



(At) Hyp iff Phgp
(®) IHy oy iff for every 2 D %, atomic multiset U, and atom p,
if ¢, It5- p, then II—IE}U P
(I) Ih{% I iff for every base 2~ D £, atomic multiset U, and atom p,
if I, p, then IK;Y p
(=) Hp—ov iff ol
(,) I@ T'A iff there are U and V such that P = U,V and H—% T and ”Jg/a A
(Inf) T, ¢ iff for any 2 D % and any U, if I, T, then ;Y ¢

Figure 2: Base-extension Semantics for IMLL

the truth-functional semantics of IMLL — see Girard [7] — though it is reflected
in the categorical semantics — see Seely [17] and Biermann [4, 3].

The multiplicity is reflected at two points in the B-eS: first in the derivability
relation between atoms, second in the supporting relation between formulas. For
the former, the rules in the bases for IMLL are multiset counterpart of that for
IPL in Definition 1.

Definition 2. A base is a (possibly infinite) set of second-level rules of the
form (P, > ps,..., P, >p,) = p, where each P; is a finite multiset of atoms, and
p; is an atom. Derivability in a base A is the least relation bz satisfying the
following:

(Ref) ptz p

(App) If S;,Pitg p; fori=1,...,nand (P, >p1,...,P,>p,) = p € %, then
Sl,...,Sn l—ggp.

Note the differences between Definition 1 and Definition 2: first, in (Ref), no
redundant atoms are allowed to appear, while in (Ref-IPL) they may; second,
in (App), the multisets Si,...,S, are collected together as a multiset, while in
(App-IPL), there is one set. These differences reflect the fact in the multiplica-
tive setting that ‘resources’ can neither be discharged nor shared.

Second, according to the aforementioned resource reading of linear logic, we
expect that in (Inf-IPL), ¢ being supported in a base % relative to some multiset
of formulas I" means that the resources garnered by I' suffice to produce ¢. We
may express this by enriching the notion of support with multisets of resources
P and U combined with multiset union — denoted , . Then, that the resources
garnered by I' are given to ¢ is captured by the following behaviour:

r H—; @ iff for any 2" 2 # and any U, if II-U% I', then II-};L’/U ©
where

I, T'y,Ty iff there are Uy and Uy s.t. U = Uy,Us and 92 T'y and K2 Ty



The resulting semantics is defined in Figure 2. In particular, we read (Inf) as
saying that, T’ H—g o means, for arbitrary extension 2" of %, if I' is supported
in 2" with some resource U (i.e. H-gg '), then ¢ is also supported in & with the
combined resource U and S.

The resulting validity relation IF — defined as that H—% holds for every base

P with the empty multiset resource @ — is sound and complete for IMLL.
Theorem 1. T'F ¢ iff I'IF .
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